Search

Search for books and authors

Financial Econometrics
Financial Econometrics
Financial econometrics is a great success story in economics. Econometrics uses data and statistical inference methods, together with structural and descriptive modeling, to address rigorous economic problems. Its development within the world of finance is quite recent and has been paralleled by a fast expansion of financial markets and an increasing variety and complexity of financial products. This has fueled the demand for people with advanced econometrics skills. For professionals and advanced graduate students pursuing greater expertise in econometric modeling, this is a superb guide to the field's frontier. With the goal of providing information that is absolutely up-to-date—essential in today's rapidly evolving financial environment—Gourieroux and Jasiak focus on methods related to foregoing research and those modeling techniques that seem relevant to future advances. They present a balanced synthesis of financial theory and statistical methodology. Recognizing that any model is necessarily a simplified image of reality and that econometric methods must be adapted and applied on a case-by-case basis, the authors employ a wide variety of data sampled at frequencies ranging from intraday to monthly. These data comprise time series representing both the European and North American markets for stocks, bonds, and foreign currencies. Practitioners are encouraged to keep a critical eye and are armed with graphical diagnostics to eradicate misspecification errors. This authoritative, state-of-the-art reference text is ideal for upper-level graduate students, researchers, and professionals seeking to update their skills and gain greater facility in using econometric models. All will benefit from the emphasis on practical aspects of financial modeling and statistical inference. Doctoral candidates will appreciate the inclusion of detailed mathematical derivations of the deeper results as well as the more advanced problems concerning high-frequency data and risk control. By establishing a link between practical questions and the answers provided by financial and statistical theory, the book also addresses the needs of applied researchers employed by financial institutions.
Available for purchase
The Econometrics of Individual Risk
The Econometrics of Individual Risk
The individual risks faced by banks, insurers, and marketers are less well understood than aggregate risks such as market-price changes. But the risks incurred or carried by individual people, companies, insurance policies, or credit agreements can be just as devastating as macroevents such as share-price fluctuations. A comprehensive introduction, The Econometrics of Individual Risk is the first book to provide a complete econometric methodology for quantifying and managing this underappreciated but important variety of risk. The book presents a course in the econometric theory of individual risk illustrated by empirical examples. And, unlike other texts, it is focused entirely on solving the actual individual risk problems businesses confront today. Christian Gourieroux and Joann Jasiak emphasize the microeconometric aspect of risk analysis by extensively discussing practical problems such as retail credit scoring, credit card transaction dynamics, and profit maximization in promotional mailing. They address regulatory issues in sections on computing the minimum capital reserve for coverage of potential losses, and on the credit-risk measure CreditVar. The book will interest graduate students in economics, business, finance, and actuarial studies, as well as actuaries and financial analysts.
Preview available
Stochastic Volatility and Time Deformation
In this paper, we study stochastic volatility models with time deformation. Such processes relate to the early work by Mandelbrot and Taylor (1967), Clark (1973), Tauchen and Pitts (1983), among others. In our setup, the latent process of stochastic volatility evolves in an operational time which differs from calendar time. The time deformation can be determined by past volume of trade, past returns, possibly with an asymmetric leverage effect, and other variables setting the pace of information arrival. The econometric specification exploits the state-space approach for stochastic volatility models proposed by Harvey, Ruiz and Shephard (1994) as well as the matching moment estimation procedure using SNP densities of stock returns and trading volume estimated by Gallant, Rossi and Tauchen (1992). Daily data on returns and trading volume of the NYSE are used in the empirical application. Supporting evidence for a time deformation representation is found and its impact on the behavior of returns and volume is analyzed. We find that increases in volume accelerate operational time, resulting in volatility being less persistent and subject to shocks with a higher innovation variance. Downward price movements have similar effects while upward price movements increase the persistence in volatility and decrease the dispersion of shocks by slowing down market time. We present the basic model as well as several extensions; in particular, we formulate and estimate a bivariate return-volume stochastic volatility model with time deformation. The latter is examined through bivariate impulse response profiles following the example of Gallant, Rossi and Tauchen (1993).
Preview available
Two Peas in a Pod
Two Peas in a Pod
Twin girls are suddenly very important to the training and care of their baby sister. Their unique arrangement for school attracts the attention of a favorite teacher
Preview available