Whispering Gallery Modes for Accurate Characterization of Optical Fibers,Äô Parameters
Whispering gallery modes (WGMs) are surface modes that propagate azimuthally around resonators with rotational symmetry (toroidal, spherical, or, as in our case, cylindrical shaped, since the optical fiber itself plays the role of the microresonator). These modes are resonant in optical wavelength, and the spectral position of the resonances depends on the radius and the refractive index of the microresonator material. Due to the high-quality factor of the resonances (as high as 107 in cylindrical microresonators), they allow measuring different parameters with high sensitivities and very low detection limits. Here, we report the use of WGMs to characterize the properties of the material that forms the microresonator. In particular, we highlight the use of this technique to measure temperature profiles along conventional and special fibers (such as photosensitive or doped fibers), elasto-optic coefficients, and UV-induced absorption loss coefficients of different photosensitive fibers. These parameters of the fibers set the optical response of fiber-based components and may change when the device is in use in an optical system; thus, this technique allows an accurate characterization of the devices and leads to proper designs of components with specific optical responses.