Reservoir Simulation and Optimization of CO2 Huff-and-puff Operations in the Bakken Shale
A numerical reservoir model was created to optimize CO2 Huff-and-Puff operations in the Bakken Shale. Huff-and-Puff is an enhanced oil recovery treatment in which a well alternates between injection, soaking, and production. Injecting CO2 into the formation and allowing it to "soak" re-pressurizes the reservoir and improves oil mobility, boosting production from the well. A compositional reservoir simulator was used to study the various design components of the Huff-and-Puff process in order to identify the parameters with the largest impact on recovery and understand the reservoir's response to cyclical CO2 injection. It was found that starting Huff-and-Puff too early in the life of the well diminishes its effectiveness, and that shorter soaking periods are preferable over longer waiting times. Huff-and-Puff works best in reservoirs with highly-conductive natural fracture networks, which allow CO2 to migrate deep into the formation and mix with the reservoir fluids. The discretization of the computational domain has a large impact on the simulation results, with coarser gridding corresponding to larger projected recoveries. Doubling the number of hydraulic fractures per stage results in considerably greater CO2 injection requirements without proportionally larger incremental recovery factors. Incremental recovery from CO2 Huff-and-Puff appears to be insufficient to make the process commercially feasible under current economic conditions. However, re-injecting mixtures of CO2 and produced hydrocarbon gases was proven to be technically and economically viable, which could significantly improve profit margins of Huff-and-Puff operations. A substantial portion of this project involved studying alternative numerical methods for modeling hydraulically-fractured reservoir models. A domain decomposition technique known as mortar coupling was used to model the reservoir system as two individually-solved subdomains: fracture and matrix. A mortar-based numerical reservoir simulator was developed and its results compared to a tradition full-domain finite difference model for the Cinco-Ley et al. (1978) finite-conductivity vertical fracture problem. Despite some numerical issues, mortar coupling closely matched Cinco-Ley et al.'s (1978) solution and has potential applications in complex problems where decoupling the fracture-matrix system might be advantageous.