Development of Catalytic Process for Biogas Upgrading
Dry reforming of methane (DRM) is a catalytic process able to convert the biogas generated from biomass degradation into syngas, which has many industrial applications. However, coke formation and metal sintering are the main drawbacks to upgrade this technology to an industrial scale. This work evaluates the effect of Ni encapsulation in two different structures: embedded nanoparticles and distributed nanoparticles over mesoporous support. Results showed that Ni embedded in ceria improved the resistance to sintering along the reduction at high temperature (800 °C) and led to a higher metal-support interaction compared to impregnated catalyst. Doping ceria with Zr inhibited the growth of CeO2 and Ni clusters in embedded catalysts and increased the oxygen mobility as revealed by oxygen isotopic exchange experiments. The doping with Gd and Sm did not enhance thermal stability on the material and the sintering is still observed. The nature of metal exchanging Ni by Pt did not affect the promotional effects of encapsulation in embedded structures. Ni-based mesoporous mixed CeO2-Al2O3 oxide catalysts prepared by one pot Evaporation Induced Self Assembly (EISA) presented small metallic Ni particles (