Types for Proofs and Programs

By Thorsten Altenkirch, Wolfgang Naraschewski, Bernhard Reus

Types for Proofs and Programs
Preview available
. . . . . . . . . . . . . 19 Ren ́eAhn,TijnBorghuis Grobner ̈ BasesinTypeTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ThierryCoquand,HenrikPersson AModalLambdaCalculuswithIterationandCaseConstructs. . . . . . . . . . 47 Jo ̈elleDespeyroux,PierreLeleu ProofNormalizationModulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 GillesDowek,BenjaminWerner ProofofImperativeProgramsinTypeTheory. . . . . . . . . . . . . . . . . . . . . . . . . 78 Jean-ChristopheFilliˆatre AnInterpretationoftheFanTheoreminTypeTheory . . . . . . . . . . . . . . . . . 93 DanielFridlender ConjunctiveTypesandSKInT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 JeanGoubault-Larrecq ModularStructuresasDependentTypesinIsabelle . . . . . . . . . . . . . . . . . . . . 121 FlorianKammul ̈ler MetatheoryofVeri?cationCalculiinLEGO. . . . . . . . . . . . . . . . . . . . . . . . . . .