Deciphering the interaction mechanism between copper and polysulfides for enhanced performance and cost-efficiency in quasi-sodium-sulfur batteries

By Haobin Song, Tong Li, Tingting He, Guanghui Chen, Chengjiang Deng, Dezhi Kong, Dong Yan, Hui Ying Yang, Shaozhuan Huang

Deciphering the interaction mechanism between copper and polysulfides for enhanced performance and cost-efficiency in quasi-sodium-sulfur batteries
Preview available
Room-temperature Na-S batteries with Al current collectors face the long-standing challenges of poor cycling performance and rate capability due to the serious sodium polysulfides (NaPSs) shuttling and sluggish reaction kinetics. Here, we demonstrate that a high-performance and low-cost quasi-Na-S battery can be realized by using the Cu@carbon nanotube (CNT) cathode host and unconventional Cu current collector (Cu-CC) in an ether electrolyte. Detailed ex-situ characterizations reveal that the Cu@CNT/S was transformed to NaPSs anchoring on Cu7S4 nanocrystals (~11 nm) during the cycling, forming the NaPS@Cu7S4/CNT cathode with robust sulfur immobilization and enhanced Na+ reaction kinetics. Moreover, the chemical interaction between NaPSs and Cu-CC in situ creates a robust Cu-CC/electrode interface with ultra-small resistance (< 4 Ω), greatly improving the electrode stability and charge transfer kinetics. The synergy of efficient NaPSs trapping and favorable Cu/electrode interface endows the quasi-Na-S battery with a moderate discharge plateau (around 1.2~1.75 V), excellent rate capability (396.9 mAh g-1 at 10 A g-1), and ultra-stable cycling performance (nearly no capacity decay over 1190 cycles). These features make it quite suitable for stable and cost-sensitive grid-scale applications.

Book Details